
主讲教师：汪红松

数据结构
（C语言版）（第2版）

栈和队列

教 学 内 容

栈和队列基本概念

栈的表示和操作

栈与递归

队列的表示和操作

Contents

老师
一、递归的概念
二、递归使用的情形
三、递归实现的原理

一、递归的概念

long Fact (long n)
{
 if (n == 0) return 1;
 else return n * Fact (n-1);
}

若一个对象部分地包含它自己, 或用它自己给自己定义, 则称
这个对象是递归的；若一个过程直接地或间接地调用自己, 则
称这个过程是递归的过程。

三种情况常常用到递归方法

一、递归的概念

递归定义的数学
函数

可递归求解的
问题

具有递归特性的
数据结构

1. 递归定义的数学函数

阶乘函数:









 0n)1(
0n 1

)(
若

若

nFactn
nFact

2阶Fibonaci数列:









)2()1(
21n 1

)(
其它

或若

nFibnFib
nFib

二、递归使用的情形

返回 2　参数 2 计算 2*Fact(1)

返回 1　参数 1 计算 1*Fact(0)

返回 1　参数 0 直接定值 = 1

参
数
传
递

递
归
调
用

结
果
返
回

回
归
求
值

if (n == 0) return 1;
else return n * Fact (n-1);

主程序 main : Fact(4)

返回 24 参数 4 计算 4*Fact(3)

返回 6　参数 3 计算 3*Fact(2)

二、递归使用的情形

分治法：对于一个较为复杂的问题，能够分解成几个相对简单
的且解法相同或类似的子问题来求解

能将一个问题转变成一个新问题，而新问题与原问题的
解法相同或类同，不同的仅是处理的对象，且这些处理
对象是变化有规律的

可以通过上述转化而使问题简化

必须有一个明确的递归出口，或称递归的边界

必备的三个条件

1

2

3

二、递归使用的情形

分治法求解递归问题算法的一般形式：
void p (参数表)
{
 if （递归结束条件）可直接求解步骤；-----基本项
 else p（较小的参数）；------归纳项
}

long Fact (long n)
{
 if (n == 0) return 1;//基本项
 else return n * Fact (n-1); //归纳项
}

二、递归使用的情形

• 链表
链表结点LNode的定义由数据域data和指针域next组成.而指针next则由
LNode定义。

• 可将一个表头指针为L的单链表定义为一个递归结构，即:
(1)一个结点,其指针域为NULL,是一个单链表;

(2)一个结点,其指针域指向单链表, 仍是一个单链表。

输出链表中各个结点的递归算法

void TraverseList(LinkList p) {

if(p==NULL) return ;

else{

cout<< p->data<<endl;

 TraverseList(p->next);}

}

2. 具有递归特性的数据结构

二、递归使用的情形

假设有3个分别命名为A. B和C的塔座，在塔座A上插有n个直径
大小各不相同，依小到大编号为1 .2.... ，n的圆盘，现要求将塔
座A上的n个圆盘移至塔座C上，并仍按同样顺序叠排。

Hanoi
塔问题

3. 可递归求解的问题

　迷宫问题　Hanoi塔问题

二、递归使用的情形

圆盘移动时必须遵循下列规则:

(1) 每次只能移动一个圆盘；

(2) 圆盘可以插在A,B和C
中的任一塔座上；

(3) 任何时刻不可将较大圆
盘压在较小圆盘之上。

A B C

二、递归使用的情形 3. 可递归求解的问题

 n = 1，则直接从 A 移到 C。
否则
(1)用 C 柱做过渡，将 A 的(n-

1)个移到 B；

(2)将 A 最后一个直接移到 C
；

(3)用 A 做过渡，将 B 的 (n-1)
个移到 C。

二、递归使用的情形 3. 可递归求解的问题

void Hanoi(int n,char A,char B,char C)
{

if(n==1)
move(A,1,C);

else {
Hanoi(n-1,A,C,B);
move(A,n,C);
Hanoi(n-1,B,A,C);
}

}

用递归法求解汉诺塔问题的算法描述：

二、递归使用的情形 3. 可递归求解的问题

调用前, 系统完成:

(1)将实参,返回地址等传递给被调用函数；
(2)为被调用函数的局部变量分配存储区；
(3)将控制转移到被调用函数的入口。

调用后, 系统完成:

(1)保存被调用函数的计算结果；
(2)释放被调用函数的数据区；
(3)依照被调用函数保存的返回地址将控制转移到
调用函数。

三、递归实现的原理

“层次”
主函数

第1次调用

第 i 次调用

0层

1层

i 层

“递归工作栈”

“工作记录” 实在参数,局部变量,返回地址

2.递归函数调用的实现
三、递归实现的原理

空间效率

时间效率

3.递归算法的效率分析

• 递归求解阶乘问题的时间复杂度为O(n)；
• 计算Fibonacci数列和Hanoi塔问题的递归算法时间

复杂度均为O(2n)。

• 阶乘问题、Fibonacci数列和Hanoi塔问题递归算法的
空间复杂度均为O(n)。

三、递归实现的原理

缺点：每次调用要生成工
作记录，保存状态信息，
入栈；返回时要出栈，恢
复状态信息。时间开销大
。

递归非递归

优点：结构清晰，程
序易读。

三、递归实现的原理

5.借助栈改写递归
设置一个工作栈存放递归工作记录（包括实参、返回地址及局部
变量等)。

进入非递归调用入口（即被调用程序开始处）将调用程序传来的
实在参数和返回地址入栈。

进入递归调用入口：当不满足递归结束条件时，逐层递归，将实
参、返回地址及局部变量入栈，这一过程可用循环语句来实现(模
拟递归分解的过程)。

递归结束条件满足，将到达递归出口的给定常数作为当前的函数
值。

返回处理：在栈不空的情况下，反复退出栈顶记录，根据记录中
的返回地址进行题意规定的操作，即逐层计算当前函数值，直至
栈空为止(模拟递归求值过程)。

（1）

（2）

（3）

（4）

（5）

三、递归实现的原理

小结

1. 递归的概念
2. 递归使用的情形

» 采用递归定义的问题
» 采用递归的数据结构
» 问题的解采用递归描述

3. 递归实现的原理

